OST

Eastern Switzerland
University of Applied Sciences

-.\

- b el
- ” N, 8) iy BB X :
— D { . - \ m ’\ -Ay‘\ ol ; P U

)

otrla C|S|on I\/Iak
Prompt Engineering?

CIT Schaffhausen, December 11, 2024

https://ozimmer.ch/

Abstract

The software architecture toolbox has become broader and deeper over the years. Agile architecting practices,
managed cloud services, and DevOps automation are some of the established additions; architecture
generation and other applications of generative Al arrived more recently. The architect’s core responsibilities
remain — serving as decision makers, technical risk and debt removers, and advocates of development teams.

This talk first presents selected milestones in the evolution of the field since its inception in the 1990s. It then
investigates whether generative Al has a place in the modern architect’s toolbox: Can and should some or all
architectural decision making be handed over to probabilistic auto-completion systems without consciousness?
We tackle possible answers by usage scenario, reporting on first experiments (spoiler alert: “no” for core
decision making, “it depends” for other usage scenarios).

The final part of the talk presents emerging research to position ethical values such as honesty, fairness, and
sustainability as special types of architecturally significant requirements, to be addressed by existing and new
design tactics. We conclude with an outline of open research problems: How will a responsible approach to
decision making and tradeoff analysis look like? How can values be integrated into component specifications
and API contracts? How can generative Al contribute to value-driven analysis and design methods?

Structure and first Take-aways of this Talk

. Structure/behavior and decisions go hand in hand in architecture design.

2. Generative Al is a tool not a threat — a powerful but expensive one.

. Ethics form a design concern that yields architecturally significant
requirements. How to address them is only partially understood.

Stability regarding the “why” and what” architecture is about,
variety in the “how” (dimensions: ceremony, risk, complexity).

Creativity-rigor balance looks different in different schools of
thought and throughout phases in evolution of the field.

OST

Eastern Switzerland
University of Applied Sciences

— = |
o TR
f;_ﬁfﬁ"‘ W e - »

~ __Software, “r“r)"r"‘—k.ur»._ J)

= | ,
Part 1: EVBlution and C*Qr““)p

D¢ f.*”‘_j“’ _f’lfﬂrrre*rrri_]rm

By analogy to building architecture, we propose the

S Oftwa e A ' C h |te Ct ure: following model of software architecture:
E ar | y WO I k (1 9 9 2) Software Architecture =

{ Elements, Form, Rationale }

Foundations for the study of software architecture

Authors: Dewayne E. Perry, @ Alexander L. Wolf Authors Info & Claims

ACM SIGSOFT Software Engineering Notes, Volume 17, Issue 4 = Pages 40 - 52 » https://doi.org/10.1145/141874.141884

Published: 01 October 1992 Publication History M) Check for updates

https://dl.acm.org/doi/10.1145/141874.141884

SWIT 12/24 © Olaf Zimmermann, 2024. 5

https://dl.acm.org/doi/10.1145/141874.141884

Phase I: All about Structure (and Interactions)

* Viewpoints and perspectives, e.g. 4+1 views (Kruchten, UP)
e Technical layers
* Functional partitioning

Practices and notations:

* Quality attributes, design tactics (SEl)

 UML diagrams (starting with stereotyped class diagrams), UML tools
* Patterns: POSA series, M. Fowler (PoEAA), Hohpe/Woolf (EIP), ...

https://en.wikipedia.org/wiki/Pattern-Oriented_Software_Architecture
https://martinfowler.com/eaaCatalog/
https://www.enterpriseintegrationpatterns.com/

Reference: N. Rozanski and E. Woods, Software Systems Architecture, https://www.viewpoints-and-perspectives.info

Viewpoints and Perspectives (Example)

e * “A viewpoint is a collection of patterns,
e e templates, and conventions for
constructing one type of view. It defines
the stakeholders whose concerns are

daanilability Perspective A Lo e Pusis P s

LUz dbinhly Mivigiiiee

¥ ¥ 3 reflected in the viewpoint and the
- guidelines, principles, and template
Contas View models for constructing its views. ”
. * “An architectural perspective is a
cmclionsl View osiarrmarkioe collection of activities, tactics, and

guidelines that are used to ensure that a
system exhibits a particular set of related

il A quality properties that require
consideration across a number of the
Coneicis Operstional View system’s architectural views. “

https://www.viewpoints-and-perspectives.info/

Reference: Zimmermann et al, ,Service-Oriented Architecture (SOA) and Business Process Choreography in an Order Management
Scenario: Rationale, Concepts, Lessons Learned®, OOPSLA 2005 conference companion, ACM Press, 2005

ADs in a Typical Enterprise Application (2004)

Presentation
Layer (multiple channels)

Business Logic
(long running,
short-lived)

Backend Integration &
Persistence
Layer (internal, external)

<

<

\

{

Chient

Presen-
tation

Channel
Controller

“We decided for the Model-View-Controller
(MVC) pattern to control Web page flow
because we gained positive experience with it

on many similar projects.”
WS Facgades

wspL—]

4

Business| ®—>

Activity Stub 1 [—><__?] ActivityStubn [®
| |

Process ‘ >

Layer ’)\ Business Process Engine /vf)

Short Running We decided for the BPEL Ianguagg
Process as workfl_ow technology because it is
Activities || implementation 1 Actii standardized and supported by tools.”
S - o s o S implementation n [===1 1 =1 T 1

Business zﬁ—\

- BSn

Services) . :
______________________ “We decided for Apache Axis as our Enterprise
Application Service Bus (ESB) integration product
Services because it performs and scales well.”
7777777777777777777777 ore ore H + -“T

Core = systom == systemn | Business Q PR ‘%?

Systems Lt I. ...other| Objects as AMEL

Phase Il (since 2004): Decisions Emphasized

* Focus on journey in addition to destination, answer “why?” questions
e e.g., in ISO/IEC/IEEE 42010 definition of software architecture

e Architectural Decision (AD) identification, making, enforcement
 Explicit capturing of formerly tacit knowledge (after-the-fact)

Practices and notations:

 Architectural Decision Record (ADR) templates to preserve design rationale
e Context, criteria, consequences (good and bad)

* Vision of guidance models: ADs that recur in a genre/style as mentors
* Example: SOA Decision Modeling (SOAD)

* Decision-centric architecture reviews (DCAR)

SWIT 12/24 © Olaf Zimmermann, 2024. 9

https://en.wikipedia.org/wiki/ISO/IEC_42010
https://en.wikipedia.org/wiki/Architectural_decision
https://soadecisions.org/soad.htm

Two ADR Templates: Nygard and WH(Y)

* Cognitect Blog 2011: “ADR” DOCUMENTING ARCHITECTURE
* Context Niche Ky - Noverber 15,201
* Outcome
* Status In the context of <use case uc

and/or component co> ... facing <non-functional concern nfc>,
* Conseguences n mponent co>,

* ABB 2012: “WH(Y)”

* Two-part context
* Chosen and neglected options
e Good and bad consequences

* Metadata left out in template

... we decided for <option 01> and neglected <options 02 to on>,

... to achieve <positive consequence/quality q>,

... accepting that <negative consequence c>.

Reference: Sustainable Architectural Design Decisions, |IEEE
Software, Vol. 30, Issue 6, 2013 and SEI SATURN 2012

https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://medium.com/olzzio/y-statements-10eb07b5a177
https://www.infoq.com/articles/sustainable-architectural-design-decisions/

Sample WH(Y): Logical Decomposition

* In the context of the entire order management system,
* facing the need to organize the overall system and manage complexity,

* we decided for the Layer-based decomposition pattern

* and neglected other decomposition pattern such as pipes-and-filters or
process-based decomposition (workflow)

* to achieve a) high flexibility regarding technology selections within the
layers (changeability) and b) that teams can work on system parts in
parallel

* accepting that there might be a performance penalty for each level of
indirection and some undesired replication of implementation artifacts.

https://www.cloudcomputingpatterns.org/distributed_application/

AD Management Process and Practices

* Architectural significance test: 5+2 criteria
* Definition of ready for single AD: START Slides: https://ozimmer.ch/

* “Big” AD criteria (most responsible
moment)

* Definition of done for single AD: ecADR | i i et e s (o
* Advice regarding good and bad ADR el .

practices (justifications, ...)

. . Concepts proposed in blog posts
° (emergmg) AD adoptlon model, catalogs (no scientific publications yet)

for domains/genres

SWIT 12/24 © Olaf Zimmermann, 2024. 12

https://ozimmer.ch/assets/presos/ZIO-ITARCKeynoteTADv101p.pdf
https://medium.com/olzzio/tagged/adr
https://ozimmer.ch/

Phase Ill: Architect as Team Player, Facilitator

* Role metaphors: gardener, primus inter pares, ...
e Shared responsibility in autonomous teams (virtual role)

* Architect elevator: engine room (DevOps) to penthouse/executive floor

Practices, notations, tools:
» Agile architecture, documentation as code (Markdown/Pandoc, ...)

e Collaborative Modelling, Quality Attribute Workshops
* Any drawing tool for overview diagrams, component views, ...

* Cloud providers providing reference architectures, methods, icon libraries

https://architectelevator.com/transformation/agile_architecture/

The Software Architect's Role in the Digital Age

be made early in the project, archi-
e 0 Ware tects drew on their experience and
abili ight.

lity to abstract to get them right
- L] Repeated project cost and timeline
A rC h lte ct S R ole overruns have demonstrated, though,
that trying to plan all features and
™ ™ ™ decide the system structure early in
ln the Dl ltal A e a project is difficult at best. This in-
g g sight, coupled with the increasing
demand for delivering high-quality
Gregor Hohpe, Allianz SE feware more quickly, has changed
how development teams approach ar-

Ipek Ozkaya, Carnegie Mellon Software Engineering Institute chitectural decision making.

Uwe Zdun, University of Vienna
Olaf Zimmermann, University of Applied Sciences of Eastern
Switzerland, Rapperswil
them avoid, decouple, or break down
big, up-front decisions. For example,
TRADITIONALLY, SOFTWARE ar- “dccisions that arc costly to change.”! agile practices have reduced the need

chitects were entrusted with making Because these decisions often had to to make irreversible decisions at a

https://ieeexplore.ieee.org/document/7725214

SWIT 12/24 © Olaf Zimmermann, 2024.

* Third special theme issue on

Software Architecture in |IEEE
Software (2016)

First: November 1995
Second: April 2006

* Trend report in guest editorial:

Architect can be a virtual role or
shared responsibility

Decisions made throughout
iterations

Lightweight ADRs
PlantUML
Architecture as/in code

14

https://www.researchgate.net/publication/3248354_The_Past_Present_and_Future_for_Software_Architecture
https://ieeexplore.ieee.org/document/7725214
https://ieeexplore.ieee.org/document/7725214

Article PDF: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7725214

State of the Art and the Practice in 2016

* Dimensions:

* Context and
requirements

e Structure

* Design decisions
(rationale)

* Realization
(implementation)

SWIT 12/24

<
1}
|
<
-

Architectural dimensions and the evolution of the software architecture field.

Aspect

Context and
requirements

Structure

Design
decisions
(reasoning
behind chosen
structures)

Realization

At the field's inception (1990s)*

Not an explicit part of the early
definition?

Elements

® Processing
* Data

« Connectors

Form

» Properties (of elements)

* Relationships (between
elements)

Rationale

Not an explicit part of the early
definition

© Olaf Zimmermann, 2024.

The state of the art
After a decade (mid 2000s)!

Quality attributes (QAs) and
constraints

4+1 views, components and
connectors in UML and architecture
description languages, informal
box-and-line diagrams created by
following processes and guidance

in architecture design methods, and
general architectural patterns; and
first domain-specific architectural
tactics and patterns (for example, for
enterprise application architemures]5

Architectural decisions recognized as
a key architectural concept in many
articles and books, but no detailed

coverage in most methods and tools®

Architecture design often embedded
into end-to-end software engineering
methods, International Federation

for Information Processing (IFIP)
subarea “realization,” and model-
driven software engineering and code
generation attempts

QAs plus explicit representation of
context:4 more emphasis on business
speed and value, cost and risk,
architectural principles, and technical-debt
management for strategic architecting

More notations, such as domain-
specific languages (for example,
context maps in domain-driven design);
more emphasis on data (for example,
information viewpoints) and on
architecting runtime relationships (for
example, in cloud deployments); design
by compaosition through frameworks;
and many more domain-specific
architectural tactics and patterns

Architecture knowledge management
and decision making as a major
research field and early adoption in
practice (for example, inclusion in IS0/
IEC/IEEE 42010:2011)

Agile practices, continuous delivery,
and DevOps; increased emphasis on
the time dimension; better enaciment
and enforcement of architectural
decisions (for example, architecturally
evident coding styles); and continuous
feedback cycles”

15

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7725214
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7725214

Subset of topics covered here: https://medium.com/olzzio

More Recent Toolbox Entries (or Comebacks?)

* Cloud-Native Application Architectures and Microservices

* APl design and management patterns
* Polyglot protocol: RESTful HTTP, gRPC, GraphQL; many messaging system

* DevOps including CI/CD and observability

* Collaborative modeling as input for analysis and synthesis/design:
* Domain Storytelling, Event Storming
* Example Mapping, Story Mapping, Story Splitting

* C4 Model: Context to Container, Component, Code (zoom in)
 Domain-Driven Design (DDD): one way of doing OOAD

https://medium.com/olzzio

OST

Eastern Switzerland
University of Applied Sciences

PN

— i T?::%ﬁé‘m%;? e SCL |

Lo

Gen Al Use Cases (in Software Architecture)

* Jim Highsmith on LinkedIn:

e * Different context: advice about
/ (Criteria?) agile software development
* “Byron is my Al writing companion

Decision Secision (ChatGPT with Canvas). | use Byron
ey Miaking for research, editing, and idea
generation.”
* Possible adoption to software
architecture:

ek Decision * Find design options and criteria
Enforcement [N Captuning . .
(Outcome) * Check, trim, and improve ADRs

* Learn what others are doing

SWIT 12/24 © Olaf Zimmermann, 2024. 18

https://www.linkedin.com/posts/jhighsmith_agileprojectmanagement-agile-scrum-activity-7267282125677043712-1PjI

Other Architects” Views

e Al as Software Architect assistant by Avraham Poupko, GSAS 2024
e LLMs compared to humans (from 16:33 to 20:00 in the presentation)
* Comments interesting too

SWIT 12/24 © Olaf Zimmermann, 2024.

19

https://www.youtube.com/watch?v=gxMmvXE0JUU

“QOC” for Gen Al in SWA

* Questions:
* When to use what? And how? Many recurring decisions, so architects needed ©

* Options:
* No use, playground mode, productions use (core tasks, edge tasks)
e Local computations (training, prompting) vs. cloud service

* Large vs. small LLM
* Prompting patterns (see Tech Radar by TW, see ICSA paper)

* Criteria:
* Criticality of task
* Complexity and context-sensitivity of task

* Popularity of task
* Existing knowledge in the public domain, in proprietary/custom LLMs

* Al hype vs. long-term perspective

Decision Made!

ADR-style rationale for my position:

Context: See this and previous slides for (N)FRs; productivity gains always desired
Status: decided
Decision: ADOPT (for ideation); TRIAL (for documentation); HOLD for decision
making (architecture generation); ASSESS (for other usage scenarios)
Consequences:

(+) stay in control, acknowledge context

(+) be able to explain, defend, revise designs

(o) be able to/have to keep on experimenting

(-) risk of funding issues (academia, industry)

(-) be perceived as skeptic among pioneers/early adopters

Other Gen Al Positions (Software Engineering)

* Pro (with technical explanations, use cases and risks identified:
“Generative Al for Software Practitioners”
e |EEE Software column, https://ieeexplore.ieee.org/document/10176168

* Neutral (clarifications, call to action, ...):
“Being a Responsible Developer in the Age of Al Hype”

 QCON presentation, transcribed

e Contra (with historic perspective on Software Engineering):
“Is Al a Silver Bullet?

* Blog post, https://ian-cooper.writeas.com/is-ai-a-silver-bullet
* Recent SI-SE/JUG event “Will Al Replace Software Engineering?”
* Many more opinions...

SWIT 12/24 © Olaf Zimmermann, 2024. 22

https://ieeexplore.ieee.org/document/10176168
https://www.infoq.com/articles/responsible-developer-ai-hype/
https://ian-cooper.writeas.com/is-ai-a-silver-bullet
https://www.jug.ch/html/events/2024/will_ai_replace_software_engineering.html

OST

Eastern Switzerland
University of Applied Sciences

Values... there are way more than S and UX

Reference: https://ieeexplore.ieee.org/ielx7/52/8693065/08693077.pdf

Ethics Is a Software
DeSlgn Concern There will always be adversarial

threats, either internal or external, that
will breach data and abuse systems
and resources. However, embracing
ethics as an explicit, nonnegotiable
software design concern will be a
start toward conscious progress.

Ipek Ozkaya

Ethics as an Architecturally
Significant Requirement

* Codes of Conduct (ACM, IEEE, ...)
* Related work: ProactiveCARE, SoDIS

* Method engineering at OST (open source):
* VDAD process, ESE practices

SWIT 12/24 © Olaf Zimmermann, 2024. 24

https://ethics.acm.org/wp-content/uploads/2021/03/Proactive-CARE-for-Computing-Professionals.pdf
https://ethics.acm.org/wp-content/uploads/2021/03/Proactive-CARE-for-Computing-Professionals.pdf
https://ethical-se.github.io/value-driven-analysis-and-design/
https://github.com/ethical-se/ese-practices
https://ieeexplore.ieee.org/ielx7/52/8693065/08693077.pdf

https://github.com/socadk/ethical-software-engineering/ NFR: Non-Functional Requirement

i inputTo i .
|[EEE Std. 7000 @cmccasrommn oo, @ mirse @earirin

Il

Standards 9 Yalue requirements are NFRs.

consistsOf EVR: Ethical Value Requirement.

YWBSR: Value-Based System Requirement.
7000-2021 - IEEE Standard Model

1..n

- - h 4
Process for Addressing Ethical @
alueCluster
Concerns during System Design corevalue: String
: refersTo i

/i relatedvalues, other demonstrators: @ValueReqmrement
Publisher: IEEE Cite This valueDemanstrators: Set<String=

narrative: String // e.g., scenario ar Use case

priority: int

Status: Active - Approved

adresses

Available through the justifiedBy
o ™ (CV WD)
IEEE GET Program
Ethical Reviews trace decisions and Il1__}((9 Evr|_ refinedinto “i’?;ggh @ DesignDecisian
Free Access design back to requirements and values. |'__
I
satisfies [satisfies introduces ||'.|
https://ieeexplore.ieee.org/document/9536679 1\
I
The System of Interest (SO} is the value bearer, BL___ @DesignElement Architectural Decision
. . i . " m— Records (ADRs)
its design elements are (or include) value dispositions. |' .
capture rationale.

SWIT 12/24 © Olaf Zimmermann, 2024. 25

https://ieeexplore.ieee.org/document/9536679
https://github.com/socadk/ethical-software-engineering/

Proc. of ETHICOMP 2024

https://github.com/socadk/ethical-software-engineering/tree/main/practices

Agile Practices for IEEE Std. 7000: ESE

ESE: Ethical Software Engineering

“Business
As Usual” in
Software Engineering and
Software Architecture

New Practice:
Story Valuation

New Practice:
Ethical Review

Concept exploration stage

N\

A

Development stage

Enhanced Practices:

Concept of
operations and
context
exploration
process

Ethical values
elicitation and
prioritization
process

Ethical
requirements
definition
process

Ethical risk-
based
design
process

A-“'—____\

Definition of Ready
Definition of Done

Transparency management process

ﬂced Practice:
%Retrospective

Reference: "Relationship of processes and stages in IEEE Std 7000" (Figure 1 in "IEEE
Standard Model Process for Addressing Ethical Concerns during System Design")

SWIT 12/24

© Olaf Zimmermann, 2024.

26

https://github.com/socadk/ethical-software-engineering/tree/main/practices

https://github.com/socadk/ethical-software-engineering/blob/main/practices/ESE-StoryValuation.md

User Story as Source of Value Requirements

User story template: https://www.agilealliance.org/glossary/user-story-template/

End User
Other Stakeholders

(e.g., Secondary Users)
positive and
negative
consequences? Data Presentation (In,@

_——]
Data Processing
Data Exchange
risks?

Data Storage and RetrieD

Transparency?

3

SWIT 12/24 © Olaf Zimmermann, 2024. 27

Impact (good and bad) on
individuals, society, and planet?

https://www.agilealliance.org/glossary/user-story-template/
https://github.com/socadk/ethical-software-engineering/blob/main/practices/ESE-StoryValuation.md

Proc. of EuroPLoP 2024 (ACM Digital library, to appear)
VDAD Process | Practices | Why VDAD? (User Stories) | Tools | Background | Glossary

VDAD PFOJECt Value-Driven Analysis and Design (VDAD)

* 6 usage scenarios (so far)

* Two new practices: stakeholder mapping, value impact mapping

Optional: Postpone for next iteration

. I I
Make I) Derive New and Desien Software
"Digitalization" Adjust Existing Arfhite i
Decision Yes | Requirements
A

Iterate

v I I I

Acquire Domain > Identify 3 Identify Values per —

Prioritize Values

Understanding Stakeholders Stakeholder
A Use ESE A Most per N AAA
practices critical i
for value step Bounded Functional
elicitation Context -
Ethical
Do not build — Other
I syStem N FRS
input
Activity Note
output

SWIT 12/24 © Olaf Zimmermann, 2024. 28

https://ethical-se.github.io/value-driven-analysis-and-design/user-stories
ZIO-SWAFourPointZerovAtCITv07.pptx
https://ethical-se.github.io/value-driven-analysis-and-design/practices/stakeholder-mapping.html

OST

Eastern Switzerland
University of Applied Sciences

Towards Responsible Software Architecting
and Engineering (Research Roadmap?)

* How does a responsible approach to tradeoff analysis and decision-making
look like? How to balance creativity and rigor in it?

* How can the guiding role of reusable architectural decision models be
leveraged for and/or supported by Retrieval Augmented Generation (RAG)
during AD preparation (criteria and option identification/evaluation)?

* How do stakeholder values fit into existing viewpoints and perspectives
models (for instance, the one in “Software Systems Architecture”?)

* How can ethical values be expressed during AD execution and
enforcement, for instance in component specifications and AP| contracts?

* How can generative Al contribute to value-driven analysis and design
methods and other initiatives (e.g., architecturally evident coding styles)?

https://en.wikipedia.org/wiki/Retrieval-augmented_generation
https://www.viewpoints-and-perspectives.info/home/book/
https://api-patterns.org/patterns/foundation/APIDescription.html

design-practice-repository

Summaries of artifacts, templates, practices, and techniques for agile architecting (DPR-mm) and service design (SDPR-nn).

Books i
O p ‘ I l Artifact/Template: Architectural DPR Git Pages Home — Avrtifacts Index

Decision Record (Y-Statement)

Motivation (Addressed Artifact/Template: Architectural Decision Record (Y-
Information Need)
e O S Statement)
Usage (Produced and
Consumed When) also known as: Why-Statement
Template Structure and
Notation(s) A Y-Statement captures decision context, addressed requirement(s), decision|
Examples consequences (good and bad) in a single, structured sentence.

* Design Practice Reference: e-book on LeanPub PATTERNS FOR%

* Y-Statements, SMART NFRs, Architecture Modeling (C4 plus), API DEeST
DDD, ... (content also available on GitHub/GitPages) B S NERST
wWITH LOoOSELY COUPLED

» "Patterns for APl Design: Simplifying Integration with MESSAGR ER GAN G
Loosely Coupled Message Exchanges” (website) ot s I

-

MIRKO STOCKER

 Arch. Significant Requirements (ASRs) in APl design Byt g
* Many decisions (about APIs), Y-statements
* 44 patterns, focus on message content &

R
CESARE PAUTASSO B8

SWIT 12/24 © Olaf Zimmermann, 2024. 31

https://socadk.github.io/design-practice-repository/artifact-templates/DPR-ArchitecturalDecisionRecordYForm.html
https://leanpub.com/dpr
https://api-patterns.org/book/

Thank You & Keep in Touch ~ 2ecwssiontime!

* | hope you find a few ideas to take away from this presentation

* | will be happy to answer questions and discuss arch. decisions
of all kinds, as well as other topics — after the talk? Later on?

e mailto:olaf.zimmermann@ost.ch

* https://medium.com/olzzio

e https://www.linkedin.com/in/ozimmer/

SWIT 12/24 © Olaf Zimmermann, 2024. 32

mailto:olaf.zimmermann@ost.ch
https://medium.com/olzzio
https://www.linkedin.com/in/ozimmer/

	Slide 1: Software Architecture @ 32: Responsible Decision Making or Prompt Engineering?
	Slide 2: Abstract
	Slide 3: Structure and first Take-aways of this Talk
	Slide 4: Software Architecture @ 32 Part 1: Evolution and Examples
	Slide 5: Software Architecture: Early Work (1992)
	Slide 6: Phase I: All about Structure (and Interactions)
	Slide 7: Viewpoints and Perspectives (Example)
	Slide 8: ADs in a Typical Enterprise Application (2004)
	Slide 9: Phase II (since 2004): Decisions Emphasized
	Slide 10: Two ADR Templates: Nygard and WH(Y)
	Slide 11: Sample WH(Y): Logical Decomposition
	Slide 12: AD Management Process and Practices
	Slide 13: Phase III: Architect as Team Player, Facilitator
	Slide 14: The Software Architect's Role in the Digital Age
	Slide 15: State of the Art and the Practice in 2016
	Slide 16: More Recent Toolbox Entries (or Comebacks?)
	Slide 17: Software Architecture (SWA) @ 32 Part 2: Generative AI in SWA – Experiments and Position(s)
	Slide 18: Gen AI Use Cases (in Software Architecture)
	Slide 19: Other Architects’ Views
	Slide 20: “QOC” for Gen AI in SWA
	Slide 21: Decision Made!
	Slide 22: Other Gen AI Positions (Software Engineering)
	Slide 23: Software Architecture @ 32 Part 3: Ethics as a Design Concern
	Slide 24: Values… there are way more than $ and UX
	Slide 25: IEEE Std. 7000
	Slide 26: Agile Practices for IEEE Std. 7000: ESE
	Slide 27: User Story as Source of Value Requirements
	Slide 28: VDAD Project
	Slide 29: Software Architecture @ 32 Conclusions and Outlook
	Slide 30: Towards Responsible Software Architecting and Engineering (Research Roadmap?)
	Slide 31: Books, Open Repos
	Slide 32: Thank You & Keep in Touch

